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The HOST Turbine Heat Transfer program is focused on improving methods of
predicting airfoil local metal temperatures. Improved methods of predicting
airfoil local metal temperatures require advances in the understanding of the
physics and methods of analytically predicting the following four aerothermal
loads: hot gas flow over airfoils, heat transfer rates on the gas-side of
airfolls, cooling air flow inside airfoils, and heat transfer rates on the
coolant-side of airfoils. A systematic "building block" research approach 1is
being pursued to investigate these four areas of concern from both the experi-
mental and analytical sides. Experimental approaches being pursued start with
fundamental experiments using simple shapes and flat plates in wind tunnels,
progress to more realistic cold and hot cascade tests using airfoils, continue
to progress in large low-speed rigs and turbines and warm turbines, and finally
combine all the interactive effects in tests using real engines or real-engine-
type turbine rigs. Analytical approaches being pursued also build from rela-
tively simple steady two-dimensional inviscid flow and boundary-layer heat
transfer codes to more advanced steady two- and three-dimensional viscous flow
and heat transfer codes and unsteady two-dimensional viscous flow and heat
transfer codes. These advanced codes provide more physics to model better the
interactive effects and the true real-engine environment.
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HOST TURBINE HEAT TRANSFER PROGRAM
OBJECTIVES:

o OBTAN A BETTER UNDERSTANDING OF THE PHYSICS OF THE
AEROTHERMODYNAMIC PHENOMENA OCCURRING IN
HIGH-TEMPERATURE TURBINES

o ASSESS AND IMPROVE ANALYTICAL METHODS USED TO PREDICT.
THE FLOW AND HEAT TRANSFER IN HIGH TEMPERATURE TURBINE
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BUILDING BLOCK AEROTHERMAL TURBINE RESEARCH APPROACH
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RANGE OF TURBINE AEROTHERMAL DESIGN SYSTEM CODES
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Figure 5

TURBINE HEAT TRANSFER SUBPROJECT SCHEDULE
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DETERMINE INFLUENCE OF VARIABLES ON
BOUNDARY-LAYER TRANSITION ON ARFOLS
AND IMPROVED MODELS

DETERMINE INFLUENCES OF ROTATION AND UNSTEADY
FLOW ON GAS-SIDE HEAT TRANSFER

OBTAN BENCHMARK QUALITY AEROTHERMODYNAMIC
DATA AND MPROVED THREE-DIMENSIONAL
VISCOUS FLOW CODES
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TURBINE HEAT TRANSFER SESSION AGENDA

GAS-SIDE HEAT TRANSFER E. TURNER, ALLISON
B. WEINBERG, SRA

GAS-SIDE HEAT TRANSFER IN A TURBINE STAGE R. DRING, UTRC

WITH ROTATION

EFFECTS OF MIGH TURBULENCE AND YORTICES R. MOFFAT, STANFORD

ON HEAT TRANSFER

THREE-DIMENSIONAL VISCOUS FLOW AND R. CRAWFORD, UTS!

HEAT TRANSFER

ASSESSMENT OF THREE-DIMENSIONAL BOUNDARY 0. ANDERSON,UTRC

LAYER CODE

COOLANT-SIDE HEAT TRANSFER WITH ROTATION F. KOPPER, P&W
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